Spyware & Rootkits

References

- [1] Copilot –A coprocessor based kernel runtime integrity Monitor by Petroni et al, Usenix Security 2004
- [2]Fast User-mode rootkit scanner for the Enterprise by Wang & Beck, Usenix LISA 2005

Some Definitions -- Spyware

- Spyware: software that either spies on the user activities or benefits a third party
 - Unsolicited pop-up advertisements
 - Tracking user behavior for marketing purposes
 - Theft of personal information
 - Routing http traffic to advertisement sites

Malware

- More general –any malicious software
 - Trojans
 - Worms
 - Viruses
 - Spyware
 - Rootkits

Rootkit

- Stealth malware
 - with root permission
 - modifies the kernel to keep its activities secret or hidden
 - Typically hides files, processes, logins, network connections

Kernel level Rootkits

- Run inside the kernel
- Have access to kernel data structures
- Loadable Kernel Modules or Device Drivers
- Patch, hook or replace system calls

User level Rootkits

- Run as a user program
- Modify kernel utilities or APIs
 - Typically, resource enumeration APIs
 - Ps, Is, netstat in Linux/Unix
 - Registry entries (RegEnumValue) and process enumeration (QuerySystemInformation) APIs in Windows

User level rootkit detection

- Run the existing utilities
- Gives the view from modified/compromised tools
- Run the same utilities in a safe mode
 - Either from a CD or a read-only version of the tools
- Compare the two versions

User level rootkit detection

- The "delta" identifies the rootkits
- Turn the "stealth" of rootkits against them
- Multiple views of resources from different points
 - But, at the same point in time
- Could also generate multiple views over time through snapshots

Rootkit Detection

- Time-based diffs. Used in
 - Tripwire (1994), Strider (2003)
- More general
 - Detect hiding and non-hiding changes
- Cross-time differences can generate false positives
 - Legitimate modifications to O/S

Rootkit Detection

- Detect API interceptions
 - Employed in a number of tools
 - Can only detect changes to monitored
 APIs
 - Software-patching, security wrappers, fault-tolerant wrappers trigger false positives

Linux rootkits[1]

rootkit	loads	overwrites	adds new	modifies	adds hook	adds inet
name:	via:	syscall jump	syscall jump	kernel text	to /proc	protocol
Complete rootkits:						
adore 0.42	LKM	X				
knark 2.4.3	LKM	X			X	X
rial	LKM	X				
rkit 1.01	LKM	X				
SucKIT 1.3b	kmem	X	X			
synapsys 0.4	LKM	X				
Demonstrates module or process hiding only:						
modhide1	LKM	X				
phantasmagoria	LKM			X		
phide	LKM	X				
Demonstrates privilege escalation backdoor only:						
kbd 3.0	LKM	X				
taskigt	LKM				X	
Demonstrates key logging only:						
Linspy v2beta2	LKM	X				

Table 1: Features of example Linux kernel-modifying rootkits

Rootkit mechanisms

- Use LKM or /dev/kmem interfaces
- Modify the system call table addresses to point to compromised or wrapped system calls
 - System call interposition
- Add new system calls to systemcall table
 - SucKIT rootkit

Rootkit mechanisms

- Add additional instructions to the system call routines
 - Phantasmagoria rootkit
- Add hooks to /proc file system
 - Knark, taskigt
- Register new inet protocol handlers
 - Knark –allows kernel level access when certain packets received

Rootkit Detectors

rootkit	Kernel memory access		synchronous	user-space
detector:	/dev/kmem	detector LKM	detection	symptom detection
KSTAT	Х	X		X
St. Michael		X	X	
Carbonite		X		
Samhain	X			X
chkrootkit				X
checkps				X
Rkscan				X
RootCheck				X
Rootkit Hunter				X

Table 2: kernel-modifying rootkit detector mechanisms

Rootkit Detectors

- Signature based
- Look for specific files, processes and other modifications of known rootkits
 - Chkrootkit
- Works well for known problems

Rootkit Detectors

- Check /proc file system entries
- Check /proc/ksyms for symbols exported by rootkits
- Employ multiple view differencing approach
- These work for some rootkits

Coprocessor based Detectors

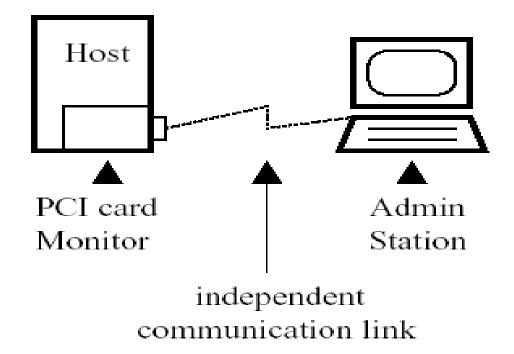


Figure 1: Copilot monitor prototype testbed architecture

Coprocessor Requirements

- Unrestricted memory access
 - Access full range of physical memory
- Transparency
 - Should not impact host processor
- Independence
 - Should not depend on host processor for accessing resources

Coprocessor Requirements

- Sufficient processing power
 - Employ hashing and encryption checks
- Sufficient memory resources
 - Keep baseline state for comparison
- Out-of-band communication
 - Need to report intrusions to admins

Coprocessor

- PCI Bus master card
- DMA access
- Virtual memory address translation

Monitored symbols/areas

symbol	use
_text	beginning of kernel text
_etext	end of kernel text
sys_call_table	kernel's system call table
swapper_pg_dir	kernel's Page Global Directory
idt_table	kernel's Interrupt Descriptor Table
modules	head of kernel's LKM list

Table 4: Symbols taken from System.map

Virtual memory translation

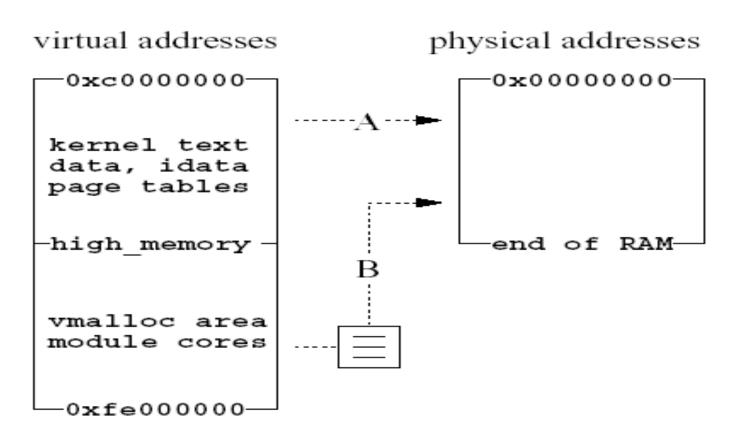


Figure 2: Virtual address translation

Virtual Memory Translation

- Linux uses linear mapping of virtual addresses oxC0000000 to oxC000000+size of physical RAM
- Page table and other structures within these virtual addresses
 - Can locate them in physical memory easily
 - Then use page tables to do translation

Summary of Today's class

- Rootkits are stealth malware
 - Try to stay hidden
 - Could potentially be trojans
- Employ system call interposition, system call modifications, new system calls and other mechanisms

Summary of Today's class

- User level rootkits are easier to detect -employ multiple views in time or from different points
- Root level rootkits are harder to remove
 - Require many advanced kernel level mechanisms