
Spyware & Rootkits



References

• [1] Copilot –A coprocessor based 
kernel runtime integrity Monitor by 
Petroni et al, Usenix Security 2004

• [2]Fast User-mode rootkit scanner 
for the Enterprise by Wang & Beck, 
Usenix LISA 2005



Some Definitions --Spyware

• Spyware: software that either spies 
on the user activities or benefits a 
third party
– Unsolicited pop-up advertisements
– Tracking user behavior for marketing 

purposes
– Theft of personal information
– Routing http traffic to advertisement 

sites



Malware

• More general –any malicious software
– Trojans
– Worms
– Viruses
– Spyware
– Rootkits



Rootkit

• Stealth malware
– with root permission
– modifies the kernel to keep its activities 

secret or hidden
– Typically hides files, processes, logins, 

network connections



Kernel level Rootkits

• Run inside the kernel
• Have access to kernel data 

structures
• Loadable Kernel Modules or Device 

Drivers
• Patch, hook or replace system calls



User level Rootkits

• Run as a user program
• Modify kernel utilities or APIs

– Typically, resource enumeration APIs
– Ps, ls, netstat in Linux/Unix
– Registry entries (RegEnumValue) and 

process enumeration 
(QuerySystemInformation) APIs in 
Windows



User level rootkit detection

• Run the existing utilities
• Gives the view from 

modified/compromised tools
• Run the same utilities in a safe mode

– Either from a CD or a read-only version 
of the tools

• Compare the two versions



User level rootkit detection

• The “delta” identifies the rootkits
• Turn the “stealth” of rootkits against 

them
• Multiple views of resources from 

different points
– But, at the same point in time

• Could also generate multiple views 
over time through snapshots



Rootkit Detection

• Time-based diffs. Used in
– Tripwire (1994), Strider (2003)

• More general
– Detect hiding and non-hiding changes

• Cross-time differences can generate 
false positives
– Legitimate modifications to O/S



Rootkit Detection

• Detect API interceptions
– Employed in a number of tools
– Can only detect changes to monitored 

APIs
– Software-patching, security wrappers, 

fault-tolerant wrappers trigger false 
positives



Linux rootkits[1]



Rootkit mechanisms

• Use LKM or /dev/kmem interfaces
• Modify the system call table 

addresses to point to compromised or 
wrapped system calls
– System call interposition

• Add new system calls to systemcall
table
– SucKIT rootkit



Rootkit mechanisms

• Add additional instructions to the 
system call routines
– Phantasmagoria rootkit

• Add hooks to /proc file system
– Knark, taskigt

• Register new inet protocol handlers
– Knark –allows kernel level access when 

certain packets received



Rootkit Detectors



Rootkit Detectors

• Signature based
• Look for specific files, processes and 

other modifications of known rootkits
– Chkrootkit

• Works well for known problems



Rootkit Detectors

• Check /proc file system entries
• Check /proc/ksyms for symbols 

exported by rootkits
• Employ multiple view differencing 

approach
• These work for some rootkits



Coprocessor based Detectors



Coprocessor Requirements

• Unrestricted memory access
– Access full range of physical memory

• Transparency
– Should not impact host processor

• Independence
– Should not depend on host processor for 

accessing resources



Coprocessor Requirements

• Sufficient processing power
– Employ hashing and encryption checks

• Sufficient memory resources
– Keep baseline state for comparison

• Out-of-band communication
– Need to report intrusions to admins



Coprocessor

• PCI Bus master card
• DMA access 
• Virtual memory address translation



Monitored symbols/areas



Virtual memory translation



Virtual Memory Translation

• Linux uses linear mapping of virtual 
addresses oxC0000000 to 
oxC0000000+size of physical RAM

• Page table and other structures 
within these virtual addresses
– Can locate them in physical memory 

easily
– Then use page tables to do translation



Summary of Today’s class

• Rootkits are stealth malware
– Try to stay hidden
– Could potentially be trojans

• Employ system call interposition, 
system call modifications, new system 
calls and other mechanisms



Summary of Today’s class

• User level rootkits are easier to 
detect –employ multiple views in time 
or from different points

• Root level rootkits are harder to 
remove 
– Require many advanced kernel level 

mechanisms


